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Optimal Integration for Functions of 
Bounded Variation* 

By J. F. Traub and D. Lee 

Abstract. The unique optimal information and the unique optimal linear algorithm are 
obtained for the integration of functions of bounded variation. 

1. Introduction. For a class of real-valued functions, we seek an approximation to 
the integral of any function in the class, provided that the function values are given 
at n points. A summary of what is currently known about this problem may be 
found in [1, Section 6.4]. 

In this paper, we study the class F of real-valued functions of uniformly bounded 
variation on the unit interval. Concepts used in this paper are defined for very 
general settings in [1] and [2]. To aid the reader, they are defined in this paper for 
the special case of integration. We summarize the results of this paper. 

(i) If n function evaluations are used, then the intrinsic uncertainty in the integral 
is at least 1/2n, and [1/2e1 function evaluations guarantee an e-approximation. 

(ii) The optimal function evaluation points are (2i - 1)/2n, i = 1,2,... ,n, and 
this optimal information is unique. 

(iii) The optimal algorithm using the optimal information is the averaging algo- 
rithm: (1/n)E. I1f((2i - 1)/2n), and this is the unique optimal linear algorithm. 

(iv) The averaging algorithm is within at most one unit of being an optimal 
complexity algorithm. 

(v) The averaging algorithm is only a constant factor better than the composite 
trapezoidal and Simpson algorithms. 

2. Basic Concepts. A function f defined on the unit interval is of bounded variation 
if there exists M > 0 such that for any partition 7, 0 < x0 < xl < ... < Xn < xn+1 
< 1, En= 0f(xi+,) -f(xi)l < M. The total variation off is defined as 

n 

Vf = sup E2 If(Xi+1) - f((Xi) 
17 i=0 

We say a class F of functions is of uniformly bounded variation if F = { f: f: [0O 1] - R 
and Vf < B), where B > 0. Without loss of generality, we take the bound B to be 
unity. 
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We seek an approximation to J01f(x) dx, Vf E F, given function values at an 
n-partition, that is, at points 0 < x1 < x2 < .. < Xn < 1. That is, the information 
N is defined as N: F- RI, and 

(2.1) N(f) = [f(X1), f (X2), f(xn)] Vf E F. 

We denote xO = 0, xn,1 = 1, Ai = xi+, - xi for i= 0,1,...,n, and A= 
max{2A0, 2A Al\ A2 ..2 * * n 1}. We have 

LEMMA 2.1. (i) A > 1/n; (ii) A= 1/n iff AO = An= 1/2n and Ai= 1/n for 
i =1, 2,... ,n- 1. 0l 

The proof is trivial, and is omitted. 
Given information N and f E F, the set of indistinguishable elements from f in F 

is 

(2.2) V(N, f)= { eF: f(xi) = f(xi), i= 1,2,... n}. 

The following lemma measures the uncertainty in the integral caused by indis- 
tinguishable elements. 

LEMMA 2.2. Let N be information corresponding to an n-partition and let f E F. 
Then, 

(2.3) L < f(x)dx U forailf E V(N, f), 

where 

U = f(xJ)AO + f(xn)An 
n-1 

+ S max{f (xi), f (xi )A}A + A (1 - )/2, and 

(2.4) L =f(x)JAO + f(xn)An 
n-1 

+ E min{f(xi), f(xi+)}Ai - A(l - Vf)/2 
i=l 

where Vf= n -f(xi+1) -f(xi)j. Furthermore, there exist IL' fu e V(N, f), such 

that Jo fL(x) dx = L and fo fu(x) dx = U. Ol 

Proof. We first show that for e F, 

!sup (X)- Ax)] + sup A(x)- xn)j 
XO(5<)2X{<uXp X)-<X{<Xn+l 

(2.5) 
+2 v t 

~sup f(x) - max{ f(x ). f (xi J........)l 
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For an arbitrary 8 > 0. there exists Ji E [xP, xi+ ] such that supx. <_, l f(x) < 
f qi) + 8,= O,1,...,n.Therefore, 

sup f(x) -(x)]+ sup (x) -7(xn)J 
XO < X ,XI Xnl<X-<Xn+l 

n-1 n-1 
+2? ( sup f(x) - max{f(xi),7(xi+1}) + ? j7(xi+ ) -(xi)I 

il 1 xi<X<Xi+i 

< [<to (XI)] + [ 1(" (Xn)] 

t1=1 + E {2 [ 1(t - max{ I(xi), I(xi+ J) ] + IJ(xi+ 1) - j(xi) }I+ 2nS 

? AO (t) (Xl) I + If (n 1 (Xn) I 
n-1 

+ E [If() - f(xi)I + If(xj+ ?) -f(tj)] + 2nS 
i=l 

? VI + 2n 8 < 1 + 2n8. 

Since 8 is arbitrary, 

ip A(x) -(xI)j + sup (x) (X) 
XO < X -X1 X-<X-<Xn+l 

n-1 
+2 ? { sup 7(x)-max{f(xi)5f(xi+J)}} 

i=l Xi<X<Xi+j 
n-1 

+ E I7(xi+ )-A(xi) I1, 
and (2.5) follows. 

Let f E V(N.f), then 

| f(x) dx I sup f(x.)]I^ 
? i~~~l ~Xi-<X-Xi+i 

n-1 

=A(X)AO + f(xn) An + Y max{ 7(x1), (xi+1)}IA 
i=1 

+ [sup A(x) -(x)AO 3su+ [ p (x) - (xn)JAn 
XOf<X (X XsX<Xn+ 

n-1 

+ ? I sup 7(x) - maxf(xi)u x(xi+)Ai 
+ 1 Xi)<aX{<(Xi+x } 

n-l 

f (xi) Ao + 7(xn)An + a max{7(xi), (xi+1)}A+ 

+ 2 ([sup fAx) A~xJ + [sup f1x 1(Xn)| 
Xo <X <X1 Xn<X-<Xn+l 

n-1 

+2 sup f(x) -max~f(xi),j(xi+j)}) 
ilXi-<X-Xi+i 

n-1 

f.e, 
7f 

+f1)~ + 
A rt may fxif (xil N + /\( -A 

A 
VI)/2 
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The last step follows from (2.5). Therefore, 
n -1 

|f(x) dx < j(x) AO + I(x ) A\ + E max{ f(xi), f (xi+ 1) }A + Ai - V- )/2 
0 i=1 

n-1 

=f(xi)Ao +f(xn)An+ E max{f(xi),f(xi+1)}Ai + A(1 - )/ 
i=l 

i.e., fJ f(x) dx < U. The result for L follows from that for U by replacingf by -f. 
Let 

([Ox1) if 2AO=A, 

1= ((xi, xi+,) if 2Ao < Aandi = min{ i: Aj = Aand1 <j<n -1}, 

n(x ,1] if2A0 < A, Ai< Afor1 <j <n-Iand2An= A. 

Let 

{f(xi) i f O < x <:x, 

fmax(X) = ({n) 
if xnn X < 

maf(xi) )f2) ifXx , i = 2,3..... ,n -1 

(maxt f (xi), f (xi+,)} if xi < x < x.+l,,i=1 2>.. . n-i 
Finally, let 

u(x ) = 

/ 
fmax(X) +(1 - -)/C, 

if 
x 

EE 
I, 

fma (x) otherwise, 
where 

2 if I=(xi,xi,)forsome i,1 i n-1. 

' t 1 if I = [O. XI) or I = (Xn, 11 

It can be verified that Vju = 1, fu e V(N, f ), and JJ fu(x) dx = U. An analogous 
conclusion holds forfL. O 

3. Optimal Information. From Lemma 2.2 we know that for all I e V(N, f), the 
integral off , Jlf(x) dx, is confined to the interval [L, UI. We call 
(3.1) r(N, f ) = (U -L)/2 
the local radius of information N at f. From (2.4) we have 

(3.2) r(Nf) =- E If(X1+?) -f(xj)lA + A(1 -Vf) 

We define 
(3.3) r(N) = supr(N, f) 

fe F 

as the global radius of information. The quantity r(N, f ) measures the intrinsic 
uncertainty of the integral of f, caused by indistinguishable elements in V(N, f), 
and r(N) measures that of the worst f in F We estimate the local and global radii of 
information in 

LEMMA 3.1. Let N be information corresponding to the n-partition 0 = xO '< x 
(3<4) r(' n foXr+1 = 1. Tn, 
(3.4) r(Nf )< A/2 for alf eF, 



OPTIMAL INTEGRATION FOR FUNCTIONS OF BOUNDED VARIATION 509 

and 

(3.5) r(N)= A/2. 0 

Proof. Since Ai < A for i = 1, 2,.. ., n - 1, by (3.2), 

r(Nf) = If f(xi+,) -f(xi) jA + 
-\(1 

2 V 

< 2, [ E If(xi+,) - f(xi)l + (l Af 2] 

i.e., r(N, f) <s A/2, proving (3.4). Let f 0. Then by (3.2), r(N, 0) = A/2, i.e., 
r(N) = SUpfEFr(N, f) = r(N, O) = A/2, proving (3.5). D 

The information N(f ) in (2.1) is said to be of cardinality n. Let I(n) be the class 
of all information of cardinality n, and let r(n) = infNre(n) r(N). Then information 
N E fin! is called nth optimal if r(NY = r(n), An nth optimal information N has 
the minimum radius of information, among all information in I( n). 

Let N* be information corresponding to the partition points xi = (2i - 1)/2n, 
where i = 1,2,. ... .n and n > 2. We have 

THEOREM 3.1. N* is the unique nth optimal information with r(N*) = r(n)= 

1/2n. 0 

Proof. For the information N*, A = 1/n. By (3.5), r(N*) = 1/2n. On the other 
hand, for an arbitrary N E 4J(n), r(N) = A/2 > 1/2n = r(N*), by Lemma 2.1(i), 
and the equality holds iff N -N *, by Lemma 2.1(ii). El 

Remark 3.1. (i) If the class of integrands F1 consists of functions with a uniformly 
bounded first derivative, then (see [1, Section 6.41) N * is an nth optimal information 
with r(N*) = 1/4n. 

(ii) To define information in (2.1), the partition points xi are independent of 
function values at the previously chosen partition points. This is nonadaptive 
information. If partition points are chosen sequentially, depending on the function 
values at the previously chosen partition points, we have adaptive information. For 
integration of functions of bounded variation, the integrand belongs to a balanced 
convex set. Therefore, one gains nothing by using adaptive information. For the 
proof, see [1, Section 2.71 or [2, Section 4.31. 

4. Optimal Algoritun. Usually, one cannot compute the integral of a function 
exactly, and instead seeks an approximation to the integral using an algorithm ( 

(4.1) p:N(F) R. 

We define the local algorithm error of f as 

(4.2) e(qw, N. f sup j(x) dx-p(N f ))| 

and the global algorithm error as 

(4.3) e(q, N) = supe(p, N, f). 
fe F 

For a given f E F, the integrals of indistinguishable elements f E V(N, f) are in 
the interval [L, UJ, where the sharp bounds L and U are given in (2.4). Therefore, 
for an arbitrary algorithm d, e(p, N, f> (U - L)/2, which by (3.1) is the local 
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radius of information r(N, f ). Thus, we have 

(4.4) e(p, N, f ) > r(N, f), 
and 

(4.5) e(q, N) > r(N) for all (P. 

Therefore, r(N, f ) and r(N) are the lower bounds of local and global algorithm 
errors, respectively. 

We present an algorithm, called the central algorithm, by choosing the center of 
[L, U] as mc(N(f )): 

(4.6) (pc(N(f)) = (U + L)/2. 
Then e(q/, N, f) = (U - L)/2 = r(N, f ), and e(Cpc, N) = r(N). Since pc has the 
minimal e(qpc, N) among all algorithms, it is called an optimal error algorithm. 

From (2.4), we have 

(4.7) e (pc, Nf) = 2[E If (X+ l -f (xi) jA + A (1 -f 

(4.8) e(pc, N) = A/2, 
n-1 f (Xi) + f(Xi+) (4.9) qpc(N(f ))= (xl)AO + f(x")A + 
i=1 

or 
n-1 A. 

(4.10) c(N(f)) =f (xl)(Ao + Ai/2) + E f (xi) - l i 
i=2 2 

+Ani) +f (Xn)( l\"+ 2) 

An algorithm is linear if it is of the form 
n 

(4.11) (p(N(f)) = Ef (xi)Hi. 
i=1 

Therefore, the central algorithm is linear. We summarize the above ii 

THEOREM 4.1. Given information N, the central algorithm pc is a linear optimal error 
algorithm, with local and global algorithm error equal to the local and global radius of 
information, respectively. 0 

Remark 4.1. It is true in general (see [2, Sections 1.3 and 1.4]) that the central 
algorithm is optimal and that the local and global algorithm error of the central 
algorithm are equal to the local and global radius of information, respectively. o 

Given the unique nth optimal information N *, we compare the algorithm error of 
the central algorithm with those of other linear algorithms in 

THEOREM 4.2. The central algorithm rpc using the unique nth optimal information N * 

is 

(4.12) ( c(N*(f)) = ? f(2il) 

Furthermore, the linear optimal error algorithm is unique. 0 
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Proof. Let p be an arbitrary noncentral linear algorithm, with (p(N *(f))= 

7=- f(x,)Hi, and let p be the largest subscript of H such that Hp # 1/n. Let 

(px) 
0 ifx < xP 
1 ifx > xp . 

Then we have 
n 

e((p, N*, fp) = sup fA HI - f (x) dx 
IERV(N, fp) =? 

= max{Hp + nP_ U Hp+ nP- L} 

=H +n 2n n 2nJ 

1 1 1 
H - P n 2n 2n (Up ) 

Therefore, e((p, N*) > e((p, N*, fp) > e(pc, N*) and qp is not optimal. 0 

5. Complexity. Given information N, we seek an algorithm p to compute an 
e-approximation to the integral of any functions in F, with algorithm error e((p, N) 
< E, where e > 0. We use the n th optimal information N * and the central algorithm 

rpC to obtain an e-approximation. Then, from Theorem 3.1 and Theorem 4.1, we have 
e(pc, N*) = r(N*) = r(n) = 1/2n < e. Therefore, n = [1/2e1. It is obvious that 
[1/2e1 is the minimal number of function evaluations for which we can have an 
e-approximation to the integral of any functions in F. 

Assume that the cost of each arithmetic operation is 1 and that of each function 
evaluation is c. We first compute N(f ) = y = (yq.. . ,yn) with information complex- 
ity cn, where n is the cardinality of N. We then compute p(y) with combinatory 
complexity comp(p(y)). The complexity of algorithm (p is thus comp(qP, N) = cn + 

supfeFcomp(9P(y)). By (4.12) we have 

(5.1) comp( N *) = ( c + 2 

We define the problem complexity of an e-approximation as 
(5.2) comp(e) = inf {comp(p , N): e ( p, N) < e }, 

EN 

and an optimal complexity algorithm (p* as 

(5.3) comp(qp*, N) = comp(e), and e(qp*, N) < e for some N. 

As noted at the beginning of this section, n = [1/2E1 is the minimal number of 
function evaluations to guarantee an e-approximation. Thus, the information com- 
plexity is no less than c[1/2e1, and the combinatory complexity is no less than 
[1/2E1 - 1. Therefore comp(e) > (c + 1)[1/2e1 - 1. Comparing this with (5.1), we 
notice that the difference between comp(qc, N*) and comp(e) is at most 1. We 
propose the following 

CONJECTURE. The central algorithm using the optimal information is the optimal 
complexity algorithm, that is, 

(5.4) comp(qc, N*) = comp(e). 0 
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6. Comparison With Other Algorithms. We estimate the global algorithm error and 
algorithm complexity of some linear algorithms; the proofs are routine and are 
omitted. 

(i) Another Riemann Sum. Let the partition points be x, = (i - 1)/n, i= 
1,2,...,n,andA=2/n. 

1 (6.1) zp(N(f)) - E f( 

(6.2) e(q, N)=- 

The algorithm complexity for an e-approximation is 

(6.3) comp(.p, N) = (c + 1)jl 
(ii) Composite Trapezoidal Rule. Let the partition points be xi = (i - 1)/(n - 1), 

i=1,2,...,n andA= 1/(n-1). 
1 1 n-I 

(6.4) cp(N(f)) = [f () +f(i)] + fEJ(ini) 2(n -1) n-i n 

(6.5) e (N. rp) = _ 1.- 

The algorithm complexity for an e-approximation is 

(6.6) comp(p, N) = (c + 1)1 + c + 2. 

(iii) Composite Simpson's Rule. Assume that n = 2m + 1. Let the partition points 
bexi = (i - 1)/2m, i = 1, 2,...,2m + 1, and A = 1/2m. 

(6.7) (N(ff)) = [f(() +2 l()] + f m F,) ~~JJJ~mL~k~f~JJ i=2i= 

2 
(6.8) e(pN) = 3(n -1) 

The algorithm complexity for an E-approximation is 

(6.9) comp(q, N) = (c + 1) + c + 3 

Observe that the costs of the linear algorithms (i)-(iii) are within a constant factor 
of comp(e). 
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